ALGEBRA II

Final Report, 2011.06.08

In the problems below, you should show up the reason, otherwise you have no point.

- Determine the following polynomials over the given field are irreducible or not.

 (1)(4 points) x⁶ + x⁵ + x³ + x + 1 over Z₂.
 (2)(4 points) Σⁿ_{i=1}y^{p(n-i)}x^{pi} + 1 over F(y), where F is a field with characteristic p for some prime p and y is transcendental over F.
 (3)(4 points) x⁴ 4x² + 5 over Q(i).
 (4)(4 points) x⁴ 4x³ + 3x² + 2x 2 + √3 over Q(√3).
 (5)(4 points) x⁴ + 2x² + x + 3 over Q.
- 2. (20 points) Let u_1, u_2, u_3 be all roots of $x^3 2$. Find all the intermediate fields between $\mathbb{Q}(u_1, u_2, u_3)$ and \mathbb{Q} .
- 3. (10 points) Let K be an extension field of F. Suppose $u \in K$ is algebraic of odd degree over F. Show that u^2 is algebraic of odd degree over F and $F(u) = F(u^2)$.
- 4. (10 points) Show that S_n is generated by $\sigma = \begin{pmatrix} 1 & 2 \end{pmatrix}$ and $\tau = \begin{pmatrix} 1 & 2 & 3 & \cdots & n \end{pmatrix}$.
- 5. (15 points) Find a field F and an irreducible polynomial f(x) in F[x] such that a is a root of multiplicity k > 1 of f(x), where $a \in K$ for some extension field K of F. (The definition of multiplicity is in the textbook, Herstein page 209)
- 6. (15 points) Let K be an extension field of F and $u, v \in K$ are algebraic over F. Suppose [F(u):F] = p and [F(v):F] = q, where gcd(p,q) = 1. Show that [F(u,v):F] = pq.
- 7. (10 points) Let F be a field with $charF = p \neq 0$. Show that all roots of $x^{p^n} x \in F[x]$ form a field.

Typeset by LATEX